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The mechanism of spin pumping, described by Tserkovnyak et al. �Phys. Rev. B 67, 140404 �2003��, is
formally analyzed in the general case of a magnetic multilayer consisting of two or more metallic ferromag-
netic �FM� films separated by normal-metal �NM� layers. It is shown that the spin-pumping-induced dynamic
coupling between FM layers modifies the linearized Gilbert equations in a way that replaces the usual local,
scalar Gilbert damping constant with a nonlocal matrix of Cartesian damping tensors. As an example, explicit
analytical results are obtained for a five-layer �spin valve� of form NM /FM /NM� /FM /NM. These are com-
pared with earlier well-known results of Tserkovnyak et al. for the related three-layer FM/NM/FM, which are
shown to have singled out the diagonal element of the local damping tensor along the axis normal to the plane
of the two magnetization vectors. For spin-valve devices of technological interest, the influence of tensor
damping on thermal noise fluctuations and/or spin-torque critical currents is shown to necessarily be coupled
to the nonlocal tensor properties of the magnetostatic interaction as well.
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I. INTRODUCTION

For purely scientific reasons, as well as technological ap-
plications such as magnetic field sensors or dc current-
tunable microwave oscillators, there is significant present
interest1 in the magnetization dynamics in current-
perpendicular-to-plane �CPP� metallic multilayer devices
comprising multiple ferromagnetic �FM� films separated by
normal-metal �NM� spacer layers. The phenomenon of spin
pumping, described earlier by Tserkovnyak et al.2,3 intro-
duces an additional source of dynamic coupling either be-
tween the magnetization of a single FM layer and its NM
electronic environment or between two or more FM layers as
mediated through their NM spacers. In the former case,2 the
effect can resemble an enhanced magnetic damping of an
individual FM layer, which has important practical applica-
tion for substantially increasing the spin-torque critical cur-
rents of CPP spin valves employed as giant-magnetoresistive
�GMR� sensors for read-head applications.4 Considered in
this paper is a more general treatment in the case of two or
more FM layers in a CPP stack. It will be shown in Sec. II
that spin pumping modifies the linearized equations of mo-
tion in a way that replaces the local, scalar damping constant
of the well-known Gilbert equations with a nonlocal matrix
of Cartesian damping tensors.5 Analytical results for the case
of a five-layer spin-valve stack of the form
NM /FM /NM� /FM /NM are discussed in detail in Sec. III
and are in Sec. IV compared and contrasted with the early
well-known results of Tserkovnyak et al.3 as well as some
very recent results of that author and colleagues.6 In the case
of CPP-GMR devices of technological interest, the influence
of the tensor nature of the damping on the thermal magneti-
zation fluctuations or spin-torque critical currents is shown to
be linked to the additional tensor properties of the nonlocal,
anisotropic magnetostatic interaction, such as is character-
ized by a stiffness-field tensor matrix. For the particular case
of in-plane magnetized CPP-GMR devices, it is argued that
the in-plane components of the damping tensor will likely
always play the dominant role. This result is complimentary

to the physical description used in Ref. 3, which by construc-
tion singled out the diagonal component of the damping ten-
sor along the axis normal to the plane of the magnetization
vectors.

II. SPIN-PUMPING AND TENSOR DAMPING

As discussed by Tserkovnyak et al.2,3 the spin current
Ipump flowing into the NM layer at an FM/NM interface �Fig.
1� due to the spin-pumping effect is described by the
expression

Ipump =
�

4�
�Re g↑↓�m̂ �

dm̂

dt
� − Im g↑↓dm̂

dt
� , �1�

where g↑↓ is a dimensionless mixing conductance and m̂ is
the unit magnetization vector. In this paper, m̂ for any FM
layer is treated as a uniform macrospin. A restatement of �Eq.
�1�� in terms more natural to Valet-Fert7 form of transport
equations is discussed in Appendix A. With the notational
conversion Ipump→−�� /2e�AJpump, where A is the cross-
sectional area of the film stack, Eq. �1�, for the case Re g↑↓

� Im g↑↓, simplifies to

j=0 j-1j=1

i=0 i=1 i-1

j
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FIG. 1. Cross-section cartoon of an N-layer multilayer stack
with N−1 interior interfaces of FM-NM or NM-FM type, such as
found in CPP-GMR pillars sandwiched between conductive leads of
much larger cross section. In the example shown, the jth layer is
FM, sandwiched by NM layers, with spin-pumping contributions at
the ith �NM/FM� and �i+1�st �FM/NM� interfaces located at y=yi

and y=yi+1 �with i= j for the labeling scheme shown�.
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Jpump 	 �
e

2�

�h/2e2�
r↑↓ �m̂ �

dm̂

dt
+ �

dm̂

dt
�, � 


Im r↑↓

Re r↑↓ ,

“− ” for FM/NM interface, “ + ” for NM/FM interface,

�2�

where r↑↓= �h /2e2�A / �g↑↓� is the inverse mixing conductance
�with dimensions of resistance area� and h /2e2 is the well-
known inverse conductance quantum �	12.9 k��. In the
present notation, all spin-current densities Jspin have the same
dimensions as electron-charge current density Je and for con-

ceptual simplicity are defined with a parallel �i.e., Ĵspin=+m̂�
rather than antiparallel alignment with magnetization m̂.
Positive J is defined as electrons flowing to the right �along
+ŷ in Fig. 1�.

For a FM layer sandwiched by two NM layers in which
the FM layer is the jth layer �j	0� of a multilayer film stack
�as in Fig. 1�, spin-pumping contributions at the ith interface,
i.e., either left �i= j� or right �i= j+1� FM-NM interfaces, Eq.
�2� can be expressed as

Ji=j,j+1
pump =

�

2e

�− 1�i−j

ri
↑↓ �m̂ j �

dm̂ j

dt
+ �i

dm̂ j

dt
� . �3�

The physical picture to now be invoked is that of small �ther-
mal� fluctuations of m̂ about equilibrium m̂0 giving rise to
the dm̂ /dt terms in Eq. �2�. Since �m̂�
1, the three vector
components of m̂ and/or dm̂ /dt are not linearly independent.
To remove this interdependency, as well as higher order
terms in Eq. �3� it is useful to work in a primed coordinate
system where ẑ�=m̂0, through use of a 3�3 Cartesian rota-
tion matrix R�m̂0� such that m̂=R ·m̂�.8 To first order in

linearly independent quantities mx� and my�, m̂=m̂0+R̃ ·m�,

where m�
�
mx��

my��
�, and where R̃ denotes the 3�2 matrix

from the first two �i.e., x and y� columns of R. Replacing
m̂�dm̂ /dt=R · �m̂��dm� /dt�, m̂�	m̂0�= ẑ�, and ẑ��_ with
matrix multiplication, the linearized form of Eq. �3� becomes

Ji=j,j+1
pump =

�

2e

�− 1�i−j

ri
↑↓ R̃ j · ��i − 1

1 �i
� · �dmjx�

� /dt

dmjy�
� /dt

� . �4�

Using the present sign convention, S j = �Mst�iA /
m̂ j is the
spin-angular momentum of the jth FM layer with saturation
magnetization thickness product �Mst� j, and 
�0 is the gy-
romagnetic ratio. Taking �M�=Ms as constant, it follows by
angular-momentum conservation that3

�Mst� j




dm̂ j

dt
⇔

1

A

dS j

dt
=

�

2e
�
i=j

j+1

�− 1�i−jm̂ j � Ji
NM � m̂ j �5�

is the contribution to dm̂ j /dt due to the net-transverse spin
current entering the jth FM layer �Fig. 1�. In Eq. �5�, Ji

NM

denotes the spin-current density in the NM layer at the ith
FM-NM interface. Taking the cross product m̂� on both
sides of Eq. �5�, transforming to primed coordinates by ma-
trix multiplying by R−1=RT, and employing similar linear-
ization as to obtain Eq. �4�, one finds to first order that

ẑ j� �
1

A

dS j�

dt
=

�

2e
�0 − 1

1 0
� · R̃ j

T · ��J j
spin 
 �

i=j

j+1

�− 1�i−jJi
NM� ,

�6�

where R̃T is the 2�3 matrix transpose of R̃. By definition,

R̃ j
T ·m̂0j =0.
The quantities �J j

spin in Eq. �6� are not known a priori but
must be determined after solution of the appropriate trans-
port equations �e.g., Appendix B�. Even in the absence of
charge-current flow �i.e., Je=0� as considered here, the �J j

spin

are nonzero due to the set of Ji
pump in Eq. �4� which appear as

source terms in the boundary conditions �Eq. �A9�� at each
FM-NM interface. Given the linear relation of Eq. �4�, one
can now apply linear superposition to express

�J j
spin =

�

2e
�

k

1

r̄k
↑↓CJ jk · R̃k · �� − 1

1 �
�dmk�

dt
,

1

r̄k
↑↓ 


1

2�
i=k

k+1
1

ri
↑↓

�7�

in terms of the set of three-dimensional �3D� dimensionless

Cartesian tensor CJ jk. The CJ jk are convenient for formal ex-
pressions such as Eq. �9�, or for analytical work in algebra-
ically simple cases, such as that exampled in Sec. III. How-
ever, they are also subject to methodical computation. For
the kth magnetic layer, the first, second, or third columns of

each CJ jk are the dimensionless vectors �J j
spin simultaneously

obtainable for all magnetic layers j from a matrix solution9

of the Valet-Fert7 transport equations with nonzero dimen-
sionless spin-pump vectors Ji=k,k+1

pump = �−1�i−k�r̄k
↑↓ /ri

↑↓� �x̂, ŷ, or
ẑ�.

To include spin currents via Eq. �5� into the magnetization
dynamics, the conventional Gilbert equations of motion for
m̂�t� can be amended as

dm̂ j

dt
= − 
�m̂ j � H j

eff� + 
 j
Gm̂ j �

dm̂ j

dt
+




�Mst� j

1

A

dS j

dt
,

�8�

where 
 j
G is the usual �scalar� Gilbert damping parameter.

From Eqs. �6� and �7�, one can deduce that the rightmost
term in Eq. �8� will scale linearly with dm� /dt, as does the
conventional Gilbert damping term. Combining these terms
together after applying the analogous linearization procedure
to Eq. �8� as was done in going from Eq. �5� to Eq. �6�, one
obtains

ẑ j� �
dm j�

dt
= 
�R̃ j

T · H j
eff − �m̂ j · H j

eff�m j�� − �
k


J jk� ·
dmk�

dt
,


J jk� 
 �
 jk�
x�x� 
 jk�

x�y�


 jk�
y�x� 
 jk�

y�y�� = �
 j
G 0

0 
 j
G�� jk + 
J jk�

pump,
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J jk�
pump =

�


�4�Mst� j

h/2e2

r̄k
↑↓ � 0 1

− 1 0
� · R̃ j

T · CJ jk · R̃k · �� − 1

1 �
� ,

�9�

where Kronecker delta � jk=1 if j=k, and � jk=0 if j�k.
In Eq. �9�, 
J j j� is a two-dimensional Cartesian “damping

tensor” expressed in a coordinate system where m̂0j� = ẑ j�,
while 
J jk�j� is a “nonlocal tensor” spanning two such coor-
dinate systems. This formalism follows naturally from the
linearization of the equations of motion for noncollinear
macrospins and is particularly useful for describing the in-
fluence of “tensor damping” on the thermal fluctuations
and/or spin-torque critical currents of such multilayer film
structures �e.g., as described further in Sec. IV�. Due to the

spin-pumping contribution 
J jk�
pump, the four individual 
 jk�

u�v�

�with u�, v�=x�, or y�� are in general nonzero with 
 jk�
x�x�

�
 jk�
y�y�, reflecting the true tensor nature of the damping in

this circumstance, which is additionally nonlocal between

magnetic layers �i.e., 
 jk�j�u�v��0�. The 
 jk�
u�v� are somewhat

arbitrary to the extent that one may replace R̃↔R̃ ·R2 in
Eq. �9�, where R2 is the 2�2 matrix representation of any
rotation about the ẑ� axis.

It is perhaps tempting to contemplate an “inverse linear-
ization” of Eq. �9� to obtain a 3D nonlinear Gilbert equation
with a fully 3D damping tensor 
J jk=R j ·
J jk� ·Rk

T. However,
Eq. �9� has a null ẑ� component and contains no information

regarding the heretofore undefined quantities 
 jk�
u�z� or 
 jk�

z�z�.
For local, isotropic/scalar Gilbert damping, one can indepen-

dently argue on spatial symmetry grounds that 
G�
z�z�

=
G�
u�u�=
G. However, the analogous extension is not so ob-

viously available for 
J jk�
pump, given the intrinsically nonlocal,

anisotropic nature of spin pumping. The proper general equa-
tion remains that of Eq. �8�, with the rightmost term given by
that in Eq. �5� or its equivalent.

III. EXAMPLE: FIVE-LAYER SYSTEM

Figure 2 shows a five-layer system with two FM layers

resembling a CPP-GMR spin-valve to be used as a proto-
type. Although the full generalization is straightforward, the
material properties and layer thickness will be assumed sym-
metric about the central NM� spacer layer 2, which will ad-
ditionally be taken to have a large spin-diffusion length
l2� t2 �with tj the thickness of the jth layer�, such that the
“ballistic” approximation �B3� applies. The inverse mixing
conductances ri=1–4

↑↓ will also be assumed to be real. Refer-
ring to either of the two the outer boundary conditions de-
scribed by Eq. �B5� of Appendix B, one finds for the
FM-NM interfaces at y=y1 and y4, that

Ji=1
NM = J1

FMm̂ j=1 +
r1
↑↓

r1�
↑↓J1

pump, J4
NM = J4

FMm̂3 +
r1
↑↓

r1�
↑↓J4

pump,

�10a�

1

2
�Vi=1

FM = + r1�J1
FM,

1

2
�V4

FM = − r1�J4
FM, �10b�

r1� 
 r1 + ��l hypb�t/l��NM, r1�
↑↓ 
 r1

↑↓ + ��l hypb�t/l��NM,

�10c�

where r1=r4 and r1
↑↓=r4

↑↓�by assumed symmetry�, hypb

 tanh or coth �depending on boundary condition�, and sub-
script “NM” refers to either outer layer 0 or 4. In Eq. �10�
and below, m̂ j↔m̂0j are used interchangeably. Inside FM
layer 3, Eqs. �B1� and �B2� of Appendix B have solution

�V3�y3 � y � y4�

= 2A3 sinh��y − y3�/lFM� + 2B3 cosh��y − y3�/lFM� ,

J3
spin�y� = 1/��l�FM
A3 cosh��y − y3�/lFM�

+ B3 sinh��y − y3�/lFM�� ,

B3 = − A3�
r1� + ��l tanh�t/l���FM�/���l�FM + r1� tanh�t/l�FM� ,

�11�

where the expression for B3 follows from Eq. �10b�. Sub-
script “FM” refers to either layer 1 or 3. The boundary con-
ditions �A5� and �A9� applied to the FM/NM boundary at
y=y3 can be expressed in combination as

1

2
�2B3 − �V2� = �r2 − r2

↑↓��A3/��l�FM = J2
spin · m̂3�m̂3

+ r2
↑↓�J2

spin − J3
pump� , �12�

where r2=r3 and r2
↑↓=r3

↑↓. The ballistic values �V2 and J2
spin

are constant inside central layer 2. Using Eq. �11� to elimi-
nate coefficient B3 in Eq. �12�, the latter may be rewritten as

−
1

2
�V2 = r2

↑↓��1J + 2qm̂3 · m̂3
T� · J2

spin − J3
pump� ,

q 

1

2r2
↑↓�r2 − r2

↑↓ +
r1� + ��l tanh�t/l��FM

1 + r1��tanh�t/l�/��l��FM
� , �13�

where 1J is the 3D identity tensor and m̂3 ·m̂3
T denotes the 3D

m1

NM
j=0 j=1 2 3 4

FM NM' FM NM

m3
z

x

�
y

y1y0 y2 y3 y4 y5

FIG. 2. Cartoon of a prototypical five-layer CPP-GMR stack
�leads not shown� with two FM layers �1 and 3� sandwiching a
central NM spacer layer �2� and with outer NM cap layers �0 and 4�.
For discussion purposes described in the text, the magnetization
vectors m̂1 and m̂3 can be considered to lie in the film plane �x-z
plane�.
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tensor formed from the vector outer product of m̂3 with it-
self.

Working through the equivalent computations applied
now to the NM/FM interface at y=y2, one finds the analo-
gous result

+
1

2
�V2 = r2

↑↓��1J + 2qm̂1 · m̂1
T� · J2

spin − J2
pump� . �14�

Eliminating �V2 between Eqs. �13� and �14� provides the
remaining needed result for J2

spin

J2
NM = J3

NM = J2
spin =

1

2
QJ · �J2

pump + J3
pump� ,

QJ 
 �1J + q�m̂1 · m̂1
T + m̂3 · m̂3

T��−1 �15�

treating tensor QJ as the 3�3 matrix inverse of the
��-bracketed tensor in Eq. �15�. Using Eqs. �10a� and �15� to
compute Ji=1–4

NM , then additional use of Eqs. �4� and �6�, allow

computation of the CJ jk defined in Eq. �7�

CJ11 = CJ33 = a1J + bQJ , CJ13 = CJ31 = − bQJ ,

a 
 r̄↑↓/r1�
↑↓, b 
 r̄↑↓/2r2

↑↓; 1/r̄↑↓ = 1
2 �1/r1

↑↓ + 1/r2
↑↓� .

�16�

For explicit evaluation of 
J jk�
pump, it is convenient to as-

sume a choice of R̃ j=1,3 for which ŷ1�= ŷ3�, such that m̂03 and
m̂01 lie in the x�-z� plane. To simplify the intermediate alge-

bra to obtain QJ from Eq. �15�, one can consider “in-plane”
magnetizations �Fig. 2�, taking m̂03= ẑ, and m̂01 in the x-z
plane �m̂01· ẑ=cos ��. This allows a particularly easy deter-

mination of R̃ j for which ŷ1�= ŷ3�= ŷ

R̃ j=1,3
T = �cos � j 0 − sin � j

0 1 0
� ; �1 = �, �3 = 0. �17�

Using Eqs. �16� and �17� with Eq. �9� allows explicit solution
for the 
J jk�

pump


J jk�
pump =

�


�4�Mst� j

h/2e2

r̄ j
↑↓ �a� jk + b�2� jk − 1� 0

0 a� jk + bdjk
� ,

d11 = d33 =
1 + q + q cos2 �

1 + 2q + q2 sin2 �
,

d13 = d31 =
− �1 + 2q�cos �

1 + 2q + q2 sin2 �
. �18�

Taking cos �=m̂01·m̂03, Eq. �18� holds for arbitrary orienta-
tion of m̂01 and m̂03, provided the flexibility in choosing the

R̃ j=1,3 is used to maintain ŷ1�= ŷ3�. However, for multilayer
film stacks with three or more magnetic layers with magne-
tizations m̂0j that do not all lie in a single plane, it will
generally be the case that some of the off-diagonal elements
of the 
J jk�

pump will be nonzero.

IV. DISCUSSION

It is perhaps instructive to compare and contrast the re-
sults of Eqs. �9� and �18� with the prior results in Ref. 3. The
latter are for a trilayer stack, corresponding most directly to
taking �NM→� in the present model, whereby Ji=1,4

pump=Ji=1,4
NM

=0. It is also effectively equivalent to the five-layer case with
insulating outer boundaries in the limit �t / l�NM→0, whereby
Ji=1,4

pump�0 but Ji=1,4
NM →0 due to perfect cancellation by the

spin current reflected from the yi=0,5 boundaries without in-
tervening spin-flip scattering. Either way, it corresponds to
r1� , r1�

↑↓→� in Eq. �10� and a→0 in Eqs. �16� and �18�.
However, a more interesting difference is that Ref. 3

treats m̂3 as stationary �hence J3
pump=0� and m̂1 as undergo-

ing a perfectly circular precession about m̂3 with a possibly
large cone angle �. By contrast, the present analysis treats m̂1
and m̂3 equally as quasistationary vectors which undergo
small but otherwise random fluctuations about their equilib-
rium positions m̂01 and m̂03 with m̂03·m̂03=cos �. To further
elucidate this distinction, one can assume the aforementioned
physical model of Ref. 3 and reanalyze that situation in terms
of the present formalism. With dm3 /dt=0=J3

pump and by ex-
plicitly inserting the condition �e.g., from Eq. �3�� that
J2

pump·m̂1
0, an explicit solution of Eq. �15� can be ex-
pressed in the form

J2
NM =

1

2
�J2

pump +
q2 cos �m̂1 − q�q + 1�m̂3

�1 + q�2 − q2 cos2 �
J2

pump · m̂3� .

�19�

Combining Eq. �19� with the earlier result from Eq. �5� and
then Eq. �3� �with �=0�, it is readily found that

m̂1 �
dm̂1

dt
⇔




�Mst�1
m̂1 �

1

A

dS1

dt
= −

�

2e




�Mst�1
m̂1 � J2

NM

= −
�
/4e

�Mst�1
�m̂1 � J2

pump +
q�q + 1��m̂3 · J2

pump�
�1 + q�2 − q2 cos2 �

m̂3 � m̂1�
= − � �


�8�Mst�1

h/2e2

r2
↑↓ �1 −

q�q + 1�sin2 �

�1 + q�2 − q2 cos2 �
��dm̂1

dt
.

�20�

The last result in Eq. �20� uses J2
pump from Eq. �3�, and the

fact that �m̂3�m̂1�=sin �, and that dm̂1 /dt and m̂3�m̂1 are
parallel vectors in the case of steady circular precession of
m̂1 about a fixed m̂3. It is the direct equivalent of Eq. �9� of
Ref. 3 with the identification �⇔q / �q+1�.

Although the final expression in Eq. �20� is azimuthally
invariant with vector orientation of m̂1, it is most convenient
to compare it with Eq. �18� at that instant where m̂1 is “in
plane” as shown in Fig. 2. At that orientation, dm̂1 /dt
→dm1y /dt=dm1y� /dt, and it is immediately confirmed from
Eqs. �9� and �18� �with a→0� that the ��-term in Eq. �20� is

simply the tensor element 
11�
y�y� of 
J11�

pump. It is now seen that
the analysis of Ref. 3 happens to mask the tensor nature of
the spin-pump damping by its restricting attention a specific
form of the motion of the magnetization vectors, which in
this case singles out the single diagonal element of the 
J11�

pump

tensor along the axis perpendicular to the plane formed by
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vectors m̂1 and m̂3. The very recent results of Ref. 6 do
address this deficiency of generality, and reveal the tensor
nature of 
J11�

pump with specific results for �=0, � /2, and �.
The present Sec. III additionally includes the nonlocal ten-
sors 
J13�

pump=
J31�
pump as well as diagonal terms a� jk in Eq. �18�

�and the variation in parameter q� when it is not the case that
rNM-FM� ��l�NMhyp�tNM / lNM� in boundary condition �B4�.
The latter condition will likely apply in the case of the tech-
nological important example of CPP-GMR spin valves.

Speaking of such, two important practical issues for these
devices involve thermal magnetic noise and spin-torque-
induced oscillations. As described previously,8 an explicit
linearization of the Heff term in Eq. �9� about equilibrium
state m̂0 that is a minimum of the free energy E leads to the
following matrix form of the linearized Gilbert equation in-
cluding spin pumping �with Je=0�:

�
k

�GJ jk� + DJ jk� � ·
dmk�

dt
+ �

k

HJ jk� · mk� · = h j��t� 
 pjR̃ j
T · h j�t� ,

GJ jk� 
 �0 − 1

1 0
� pj



� jk +

pj
J jk� − pk
Jkj�

2

, pj 


�MstA� j

�m

DJ jk� 

pj
J jk� + pk
Jkj�

2

, H0j

eff 

− 1

�m

�E�m̂0�
�m̂ j

,

HJ jk 
 �m̂0j · H0j
eff�1J� jk −

�H0j
eff

�m̂k

, HJ jk� 
 R̃ j
T · HJ jk · R̃k,

�21�

where the h j�t� are small perturbation fields. The form of DJ jk�

and GJ jk� in Eq. �21� is chosen so that they retain the original
delineation8 as symmetric and antisymmetic tensors regard-
less of the symmetry of 
J jk� . By use of a fixed “reference
moment” �m in the definition of H j

eff, the “stiffness-field”

tensor matrix Hjk�
u�v���E /�mju�

� �mkv�
� is symmetric positive

definite and �E=−A� j�Mst� jh j ·�m j =−�m� jh j� ·m j� has the
proper conjugate form so that Eq. �21� are now ready to
directly apply fluctuation-dissipation expressions specifically
suited to such linear-matrix equations of motion.8 Treating
the fields h j��t� now as thermal fluctuation fields driving the
m j��t� fluctuations

�hju�
� ���hkv�

� �0�� =
2kBT

�m
Djk�

u�v����� ,

S
h

ju�
� h

kv�
�

� ��� =
2kBT

�m
Djk�

u�v� �22�

are the time-correlation or cross-power spectral-density
�PSD� Fourier transform pairs. Through their relationship de-
scribed in Eq. �21�, the nonlocal, tensor nature of the spin-
pumping contribution 
J jk�

pump to 
J jk� is directly translated into
those of the 2NFM�2NFM system “damping tensor matrix”

DJ�↔DJ jk�
u�v�, where NFM is the number of FM layers in the

multilayer film stack. The cross-PSD tensor matrix

SJm�m�
� ���↔S

m
ju�
� m

kv�
�

� ��� for the m� fluctuations can then be

expressed as8

SJm�m�
� ��� =

kBT

i��m
��J���� − �J�†����

→ �J�†��� · SJh�h�
� · �J�†��� ,

�J���� 
 �HJ � − i��GJ� + DJ���−1, �23�

where �J���� is the complex susceptibility tensor matrix for
the 
m� ,h�� system and �J�†��� its Hermitian transpose. It
has been theoretically argued10 that Eq. �22�, and thus the
second expression in Eq. �23�, remain valid when Je�0,
despite spin-torque contributions to H j

eff resulting in an

asymmetric HJ � �e.g., see Eq. �25�� that violates the condition
of thermal equilibrium implicitly assumed for the
fluctuation-dissipation relations.

Since HJ � is in general fully nonlocal with anisotropic/

tensor character, any additional tensor nature of DJ will likely
be altered or muted as to the influence on the detectable m�
fluctuations. As an example, one can again consider the situ-
ation depicted in Fig. 2, applied to the case of a CPP-GMR
spin valve with typical in-plane magnetization. The device’s
output noise PSD will reflect fluctuations in m̂1 ·m̂3. Taking
m̂3 to again play the simplifying role of an ideal fixed �or
pinned� reference layer �i.e., dm̂3 /dt→0�, the PSD will be
proportional to sin2 � S

m
1x�
� m1x�

� ���. As was also shown

previously,11 it follows from Eq. �23� �and assuming the

symmetry H11�
x�y�=H11�

y�x�=0� that

S
m

1x�
� m1x�

� ��� 	
2kBT


�MstA�1


11�
x�x��H11�

y�y�/H11�
x�x���0

2 + 
11�
y�y��2

��2 − �0
2�2 + �����2 ,

�0 = 
�H11�
y�y�H11�

x�x� �� = 
�
11�
x�x�H11�

y�y� + 
11�
y�y�H11�

x�x��
�24�

treating 
11�
x�x�
11�

y�y�≪1. The tensor influence of the 
11�
u�u�

is seen to be weighted by the relative size of the stiffness-

field matrix elements H11�
v�v�. For the thin-film geometries

with t��A typical of such devices, out-of-plane demagneti-

zation field contribution typically result in H11�
y�y� that are an

order of magnitude larger than H11�
x�x�. Since 
11�

y�y��
11�
x�x�

from Eq. �18�, it follows that the linewidth �� and the PSD
S

m
1x�
� m1x�

� ����0� in the spectral range of practical interest will

both be expected to be determined primarily by 
11�
x�x�.

A similar circumstance also applies to the important prob-
lem of critical currents for spin-torque magnetization excita-
tion in CPP-GMR spin valves with Je�0. Consider the same
example as above, again treating m̂3 as stationary and seek-
ing nontrivial solutions of Eq. �21� �with h��t�=0� of the
form m1��t��e−st. Summarizing results obtainable from Eqs.
�5�, �8�, and �21�
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H1
eff = H1

eff�Je=0 +
�/2e

�Mst�1
J2

NM � m̂1,

det�H11�
x�x� − s�
11�

x�x� H11�
x�y� + s�

H11�
y�x� − s� H11�

y�y� − s�
11�
y�y�� = 0, �25�

where s�=s /
, 
11�
u�v� as in Eq. �18� and where J2

NM�Je in
Eq. �25� is now the solution of the transport equations with
Jpump=0 but Je�0. The cross product form of the spin-
torque contribution to H1

eff explicitly yields an asymmetric/

nonreciprocal contribution to HJ �, i.e., H11�
x�y�−H11�

y�x��Je.
The critical-current density is that value of Je where Re s
becomes negative. Given the basic stability criterion that

det HJ11� �0, the spin-torque critical condition from Eq. �25�
can be expressed as


11�
y�y�H11�

x�x� + 
11�
x�x�H11�

y�y� = H11�
x�y� − H11�

y�x�. �26�

Like for thermal noise, the spin-torque critical point should

again be determined primarily by 
11�
x�x� for in-plane magne-

tized CPP-GMR spin valves with typical H11�
y�y��H11�

x�x�.
This simply reflects the fact that the �quasiuniform� modes of
thermal fluctuation or critical-point spin-torque oscillation
tend to exhibit rather “elliptical,” mostly in-plane motion

when H11�
y�y��H11�

x�x�. This is obviously different than the
steady, pure circular precession described in Ref. 3, which

contrastingly highlights the influence of 
11�
y�y�, along with its

interesting, additional � dependence.
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APPENDIX A: INTERFACE BOUNDARY CONDITIONS

The well-known “circuit theory” formulation12 of the
boundary conditions for the electron-charge current density
Je and the �dimensionally equivalent� spin-current density
JNM

spin at a FM/NM interface can �taking �VFM=�VFMm̂� be
expressed as

Je = �G↑ + G↓��V̄NM − V̄FM�

+
1

2
�G↑ − G↓���VNM · m̂ − �VFM� , �A1�

JNM
spin = ��G↑ − G↓��V̄NM − V̄FM� +

1

2
�G↑ + G↓�

���VNM · m̂ − �VFM��m̂ + Re G↑↓�m̂ � �VNM � m̂�

+ Im G↑↓��VNM � m̂� �A2�

in terms of spin-independent electric potential V̄ and accu-
mulation �V �=e���. Setting Je=0 in Eq. �A1� and substi-

tuting into Eq. �A2�, one obtains in the limit Im G↑↓→0 the
result

JNM
spin�Je=0 =

2G↑G↓

G↑ + G↓ ��VNM · m̂ − �VFM�m̂

+ G↑↓�m̂ � �VNM � m̂� . �A3�

Comparing with Eq. �4� of Tserkovnyak et al.3 �with
�V⇔�s� and remembering the present conversion of
JNM

spin↔−�A� /2e�−1INM
spin, one immediately makes the identifi-

cation

g↑↓ = 2A�h/2e2�G↑↓ �A4�

relating dimensionless g↑↓ in Eq. �1� to G↑↓, the conventional
mixing conductance �per area�.

The common approximations that JFM
spin=JFM

spinm̂ inside all
FM layers, and that longitudinal spin-current density is con-
served at FM/NM interfaces, yields the usual interface-
boundary condition

JNM
spin · m̂ = JFM

spin. �A5�

Solving for JNM
spin ·m̂ from Eq. �A2� then leads �with Eq. �A1��

to a second-scalar boundary condition

V̄NM − V̄FM =
G↑ + G↓

4G↑G↓ Je −
G↑ − G↓

4G↑G↓ JFM
spin. �A6�

Equation �A6� is identical in form with the standard �collin-
ear� Valet-Fert model7 and immediately yields the following
identifications:

r =
G↑ + G↓

4G↑G↓ , 
 =
G↑ − G↓

G↑ + G↓ �A7�

for the conventional Valet-Fert interface parameters r and y.
The three vector terms on the right of Eq. �A2� are mutu-

ally orthogonal. Working in a rotated �primed� coordinate
system where ẑ�=m̂�, Eqs. �A1� and �A2� can be similarly
inverted to solve for the three components of the vector
��VNM� −�VFMm̂�� in terms of JNM�spin, JFM

spin, and Je. A final
transformation back to the original �unprimed� coordinates
yields the vector interface-boundary condition

1

2
��VNM − �VFMm̂� = ��r − Re r↑↓�JFM

spin − r
Je�m̂

+ Re r↑↓JNM
spin + Im r↑↓m̂ � JNM

spin,

r↑↓ 
 1/�2G↑↓� = �h/2e2�/�g↑↓/A� . �A8�

Combined with Eq. �A4�, the last relation in Eq. �A8� yields
Eq. �2�. Equation �A8� is a generalization of Valet-Fert to the
noncollinear case.

As noted by Tserkovnyak et al.,3 boundary conditions
�A3� do not directly include spin-pumping terms but instead
involve only “backflow” terms JNM

spin↔JNM
back in the NM layer.

With spin-pumping physically present, JNM
back arises as the re-

sponse to the spin accumulation �VNM created by Jpump. It
follows that JNM

back=JNM
spin−Jpump, where JNM

spin is henceforth the
total spin current in the NM layer. Thus, including spin
pumping in Valet-Fert transport equations is then a matter of
replacing JNM

spin→JNM
spin−Jpump in Eq. �A8�. The modified form
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of Eq. �A8�, for a FM/NM interface, becomes

1

2
��VNM − �VFMm̂� = ��r − Re r↑↓�JFM

spin − r
Je�m̂

+ Re r↑↓�JNM
spin − Jpump�

+ Im r↑↓m̂ � �JNM
spin − Jpump� .

�A9�

For an NM/FM interface, the sign is flipped on the left sides
of Eqs. �A6� and �A9�.

APPENDIX B: 1D TRANSPORT EQUATIONS

For one-dimensional transport �flow along the y axis�, the
quasistatic Valet-Fert7 �drift diffusion, quasistatic� transport
equations can be written as9

�2�V

�y2 =
�V

l2 ,
�

�y
�Je =

1

�
� �V̄

�y
+

1

2
�m̂ ·

��V

�y
�� = 0,

along with

Jspin =
1

�
��

�V̄

�y
m̂ +

1

2

��V

�y
� , �B1�

where �=bulk resistivity,13 l=spin diffusion length, and �
=bulk /equilibrium spin-current polarization in FM layers
��
0 in NM layers�. The solution for any one layer has the
form

V̄ = �Jey + C −
1

2
��V · m̂, �V = Aey/l + Be−y/l. �B2�

For FM layers, A=Am̂ , B=Bm̂. In the case where
l≫ film thickness, one may employ an alternative ballistic
approximation:

�V = A, Jspin = B, V̄ = C . �B3�

It is not necessary to solve for V̄ and/or the C coefficients
using Eq. �A6� if only �V and Jspin are required. The remain-
ing coefficients are determined by the interface-boundary
conditions Eq. �A5�, �A6�, �7�, and �A9�, and external bound-
ary conditions at the outer two surfaces of the film stack.

Regarding the latter, one approximation is to treat the ex-
ternal “leads” �with quasi-infinite cross section� as equilib-
rium reservoirs and set �V�y=yi=0,N�→0 at the outermost
�i=0,N� lead-stack interfaces of an N-layer stack �Fig. 1�.
The complimentary approximation is of an insulating bound-
ary, with. Jspin�y=yi=0,N�→0. For the case �such as in Sec.
III� where the outer �j=0,N−1� layers are NM, and the ad-
jacent inner �j=1,N−2� layers are FM, it is readily found
using Eqs. �B1� and �B2� that

�Vi=1,N−1
NM = � 2��l� j=0,N−1hypb�tj/lj�Ji

NM, �B4�

where hypb� �=tanh� � or coth� � for equipotential, or insu-
lating boundaries, respectively. Combining Eq. �B4� with Eq.
�A9�, and neglecting Im r↑↓, one finds for Je=0 that

�
1

2
�Vi=1,N−1

FM = �ri + ��l� j=0,N−1hypb�tj/lj��Ji
FM,

Ji
NM = Ji

FMm̂ +
ri
↑↓Ji

pump

ri
↑↓ + ��l� jhypb�tj/lj�

. �B5�
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